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Abstract

SMARTLAGOON Project benefits from the support of the Horizon 2020 programme of the European
Union within the framework of an Innovation Action. To ensure the development of their activities
to achieve the expected results the eight organizations members of the consortium will release
some deliverables during the timeline of the project (48 months in total). These deliverables are
numbered and depend on each Work Package.

The present deliverable D3.3 is the third deliverable of the Work-Package 3 (WP3). The focus of this
Work Package is to develop innovative modelling of the Mar Menor environmental processes in a
holistic way. The first (task 3.1) and second tasks (task 3.2) of the WP3 were described in delivera-
bles 3.1 and 3.2, respectively. The present deliverable reports the results of the third task (task 3.3)
of WP3. The task 3.3 addresses the objective of developing new modelling approaches, combining
different data collections, physics-based modelling and artificial intelligence for highly anthropised
coastal environments. The focus of this task is to develop innovative approaches to creating envi-
ronmental models will be developed based on the capacity of machine learning (ML) techniques to
estimate nonlinear relationships between environmental variables. ML techniques can be used as
an alternative to simulate environmental processes without the need to know the cause-effect re-
lationship with the catchment or lake characteristics. These techniques will be combined with phys-
ically based models to build more efficient hybrid predictive models.

Specifically, these tasks consist of the development of machine learning approaches for enhancing
predictions of flood, algal bloom and hypoxia. These tasks seek to develop new ML algorithms for
predicting stream discharge, the likelihood of flood events, algal blooms and hypoxia. A combination
of sensing data from Work Package 2 (WP2), and model output from WP3 (task 3.1 and 3.2), are
utilized in the search for new predictive algorithm. Initially, for some of the tasks, the large dataset
already available from Erken Lake was used, which helped to narrow down the field of different ML
approaches that might be useful, before applying a selection of these approaches to the Mar Menor.
We tested and applied a number of techniques available through comprehensive ML libraries im-
plemented in Python (e.g. tensorflow, xgboost.ai and scikit-learn). Given the recent installation of
the streamflow and quality measurement instruments in the framework of the SMARTLAGOON pro-
ject, this document presents all the modelling carried out to date and will of course be continuously
updated as new model capabilities are tested and new observational data are obtained.

In this deliverable we explain how each of the elaborated tasks that are part of this task 3.3 has
been developed. First, we describe the motivation, objectives, interest of the results and method-
ology of each task. The different study areas (Erken Lake, Mar Menor Lagoon and other experi-
mental areas) are described, and the required input data are analyzed. It is explained in detail how
the development of the different ML models has been carried out and how they are combined with
the outputs of the physics-based models of the other WP tasks. Finally, the results and conclusions
reached are detailed.
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1. Introduction

1.1 Motivation

This document is the third deliverable of the Work-Package 3 (WP3) of the SMARTLAGOON project,
led by the UCAM. The focus of this Work-Package is to develop innovative modelling of the Mar
Menor environmental processes in a holistic way. This implies considering the water balance of the
watershed, the ecological, physical and chemical dynamics of the water body, and its connections
with the Mediterranean Sea. This will be achieved by combining physical and ecological models. The
first (task 3.1) and second tasks (task 3.2) of the WP3 were described in deliverables 3.1 and 3.2,
respectively, and are focused on the development of physically based catchment, lake and lagoon
models. The present deliverable reports the results of the third task (task 3.3) of WP3.

The task 3.3 addressed the objective of developing new modelling approaches, which combine sens-
ing data, physically based models and artificial intelligence techniques for highly anthropized coastal
environments. The focus of this task is to develop innovative approaches to creating environmental
models will be developed based on the capacity of machine learning (ML) techniques to estimate
nonlinear relationships between environmental variables. As an alternative to physically based
models, estimation of hydrological and ecological variables by ML techniques has also gained much
attention among researchers. Different ML techniques, which have been introduced and widely ap-
plied to problems affecting dynamic environmental systems, were found to be powerful tools for
the modelling of these processes. The advantage of the ML is that it can be trained to learn complex
relationships without requiring a priori knowledge of the physical characteristics of the process. This
feature makes ML an effective tool for modelling complex environmental processes. ML techniques
can be used as an alternative to simulate environmental processes without the need to know the
cause-effect relationship with the catchment or lake characteristics.

Specifically, the task 3.3 consists of the development of machine learning approaches for enhancing
predictions of flood, algal bloom and hypoxia. The fist task aims to develop machine learning algo-
rithms to predict the hydrographs in the ephemeral streams which drain the Mar Menor lagoon
because of the more and more frequent episodes of extreme storms. The prediction of the chloro-
phyll variable directly related to algae blooms and of the dissolved oxygen variable for the prediction
of hypoxia episodes is also analysed. A combination of sensing data from Work Package 2 (WP2),
and model output from WP3 (task 3.1 and 3.2), will be utilized in the search for new predictive
algorithms. ML techniques will be combined with physically based models to build more efficient
hybrid predictive models. The data initially available for the development of all these tasks in the
Mar Menor lagoon were not sufficient, so the large dataset already available from the Erken Lake
and other lakes was used for some of them. This helped to refine the range of different ML ap-
proaches that might be useful, before applying a selection of these approaches to the Mar Menor.
Several techniques available through comprehensive ML libraries implemented in Python were
tested and applied. In addition to the tasks already described, other tasks related to the prediction
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of water quality variables with ML were carried out. The prediction of suspended sediments in the
water by means of physically based models and their improvement by means of ML was analyzed.

This report presents all the modelling carried out to date and will of course be continuously updated
as new model capabilities are tested and new observational data are obtained given the recent
installation of the flow measurement (video-monitoring) and water quality (monitoring buoy) in-
struments in the framework of the SMARTLAGOON project.

1.2 Goals

The aim of this deliverable is to report on the progress made in the development of the machine
learning (ML) models to estimate hydrological and water quality variables of the Mar Menor. These
techniques were combined with physically based models to build more efficient hybrid predictive
models. As there was initially insufficient data available in the Mar Menor, the Erken Lake was cho-
sen to test the different approaches that could later be applied in the coastal lagoon. For some of
the tasks, we did not have enough data in Erken Lake either, so the techniques were tested in other
experimental areas.

The general objectives of the task 3.3 are:

e Develop new ML methodologies to enhance flood, algal bloom and hypoxia prediction.

e Combine outputs from physically based models such as SWAT+ and GOTM-WET models (task
3.1 and 3.2) with ML models to improve predictions of target variables.

e Use for prediction with ML models the data collected by the technologies installed in the
framework of the SMARTLAGOON project (data obtained from the video-based monitoring
and data monitored by the buoy).

e Develop methodologies using machine learning models for improved prediction of addi-
tional water quality variables such as suspended sediments.

1.3 Interest in results

Coastal lagoons are ecosystems of great socioeconomic and environmental value. However, they
are exposed to great anthropogenic and environmental pressures, mainly due to climate change,
which threaten their sustainability.

One of the main effects of climate change is flooding. During the last few years, floods have caused
a lot of personal and economic damage in the Campo de Cartagena (drainage basin to the Mar
Menor), affecting the deterioration of the Mar Menor. Every time there is heavy rainfall in the area
around the Mar Menor there are two negative effects. On the one hand, the risks associated with
the civilian population and on the other hand, the massive entry of runoff with high nutrient loads
into the Mar Menor. For this reason, managing the risk of flooding is an issue of interest in the
recovery of the lagoon. Accurate prediction of hourly runoff during storms or heavy rainfall is an
important task for better flood risk management. For this purpose, different hydrological models
have been developed to provide a better understanding of the characteristics, processes, and re-
sponses of the catchment during storm events. In the SMARTLAGOON project, one of the world's
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most popular physically based semi-distributed hydrological models, the Soil and Water Assessment
Tool (SWAT) model, has been tested for this task 3.3. Nowadays, advances in modelling based on
machine learning methodologies have led to good results in the field of hydrology. Therefore, the
results obtained from the physical model have been compared with those obtained with different
machine learning algorithms.

Another consequence of climate change as well as increased nutrient loading from anthropogenic
sources is the eutrophication in lakes and lagoons. Eutrophication influences the level of algal
blooms which are considered very harmful and can also cause hypoxic conditions in lakes. Harmful
algal blooms are a serious threat to natural water systems and have been increasing worldwide
(Burford et al., 2020; Watson et al., 2016). The chlorophyll (Chl) concentration is a useful indicator
for measuring the abundance and variety of phytoplankton and/or algal biomass (Boyer et al.,
2009). Because all photosynthetic algae include Chl, algal bloom can be easily predicted by investi-
gation of Chl concentration in waterbodies. In the specific case of the Mar Menor, since 2016 there
have been several episodes of unprecedented eutrophication caused by an abrupt increase in the
average concentration of nutrients and Chl. Chl is an indirect measure of the health of the lagoon
as several episodes of fish mortality have been attributed to lack of oxygen in the water due to
massive algal blooms. Understanding and modeling the level of a eutrophication indicator, such as
Chl, benefits the management of this complex system. To better manage and mitigate the effects
of algal blooms, methods are needed to predict their timing and magnitude. Machine learning tech-
niques have been used in this project for the prediction of algal blooms.

The third task of this deliverable focuses on hypoxia prediction. Hypoxia is a condition that occurs
when the dissolved oxygen (DO) in water falls below 2-4 mg/l, which can have adverse conse-
guences for ecosystem functioning. DO is a critical parameter for the health and functioning of la-
goons and lakes. It refers to the amount of oxygen gas dissolved in water, which is essential for the
survival of aquatic organisms and the overall ecosystem balance. Hypoxic conditions can arise due
to various factors, including excessive nutrient input, algal blooms, and water pollution. Hypoxia
severely impacts the survival and health of fish, invertebrates, and other aquatic organisms. This
can disrupt the natural balance of the ecosystem and lead to changes in species composition. In
hypoxic conditions, the release of nutrients from sediments increases, exacerbating eutrophication.
These nutrients can fuel the growth of harmful algal blooms, further depleting oxygen as they decay.
Eutrophication episodes in the Mar Menor are characterized by an increase in turbidity and a de-
crease in DO. Identifying the environmental conditions that induce hypoxia is an issue of great eco-
logical importance in the case of the Mar Menor. In this study, machine learning algorithms were
used to predict the OD concentration and thus hypoxia in the Mar Menor.

In a first phase, insufficient data were available for the Mar Menor. Therefore, different machine
learning techniques were tested in the Erken lagoon and in other areas, which have an automated
long-term monitoring programme that provides hourly data. These trials allowed us to perform
comprehensive tests and establish the methodology to be used for the prediction of water quality
variables.
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The runoff into the lagoon brings a large amount of sediment, which also contributes to habitat
degradation and deterioration of the biota. In this SMARTLAGOON project, different techniques,
including artificial intelligence, were tested for the prediction of sediments from stream discharge.

1.4 Theoretical framework

1.4.1 Flood prediction

Determining the relationship between precipitation and runoff in river basins is considered one of
the most important problems facing hydrologists and engineers (Nor et al., 2007). Overall, this is
essential for effective water management, flood protection, and climate change adaptation. It ena-
bles informed decision-making, supports sustainable development, and helps mitigate the risks as-
sociated with water-related hazards.

Understanding the rainfall-runoff relationship is crucial for designing effective flood protection
measures in urban areas and agricultural lands. By accurately estimating runoff help to design infra-
structure such as dams, levees, and drainage systems that can handle the expected flow of water
during heavy rainfall events, thereby reducing the risk of flooding and associated damages. On the
other hand, climate change is altering rainfall patterns, leading to more frequent and intense pre-
cipitation events in certain regions. Understanding the rainfall-runoff relationship is crucial for as-
sessing the potential impacts of climate change on water resources, including changes in flood risk,
drought conditions, and overall water availability. This information is vital for developing adaptation
strategies and designing resilient water management systems.

Flood forecasting refers to the anticipated estimation of streamflow in a river or stream during a
flood event. It consists of predicting the magnitude and time of occurrence of the flood in order to
take preventive and mitigation measures. In the context of flood forecasting, hydrographs are a
fundamental tool for understanding and visualising how the flow of a stream responds to intense
precipitation and how the flood develops over time. Flood prediction is therefore based on the anal-
ysis of historical hydrographs and the application of models.

Intermittent rivers and ephemeral streams (IRES) are common in semi-arid Mediterranean climates
and flash floods caused by extreme storm events (Jaeger et al., 2017) are becoming more severe
due to climate change. Accurate simulation of sub-hourly flows in these streams is crucial for risk
management and flood control.

Focusing on our case study. Numerous streams, almost all of them ephemeral, flow into the Mar
Menor Lagoon. These streams play the role of draining rainwater into the lagoon. Flooding in this
area is the result of several factors, among them the intense rainfall regime that occurs in the region,
especially during "cold drops". During episodes of torrential rain, the Mar Menor streams can carry
a very high flow of water, dragging sediments, vegetation and other materials. This can generate
overflows in areas close to the channels and cause flooding in urban and agricultural areas. These
events have raised concern and awareness of the need to take measures to prevent and mitigate
the effects of flooding. Hence the importance of finding the relationship between precipitation and
discharge for flood prediction.
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There are several approaches and approaches used to predict floods. These rainfall-runoff model-
ling frameworks can be divided into two main groups: physically based and/or data based ap-
proaches (Young et al., 2017). Physically based models are used to simulate the behaviour of water
flow in a river basin. These models consider precipitation, topography, soil and other parameters to
predict runoff and potential flooding. Examples of widely used hydrological models include HEC-
HMS, SWAT, and MIKE SHE. Data-driven models use ML and statistical techniques to analyse histor-
ical flood data and generate predictions. Physics-based modelling aims to reproduce hydrological
processes in a physically realistic way and is based on physical laws, whereas data-driven modelling
aims to directly model the input-output relationship based on statistical correlations rather than
physical principles (Nguyen et al., 2014).

There are several studies comparing these two types of models. In Nor et al. (2007), the radial basis
function (RBF) method and HEC-HMS Model are applied to model the rainfall-flow relationship of
two river basins in Malaysia. Both models are used to predict the flow hydrograph as a function of
storm events. Young et al. (2017) developed a hybrid approach based on physics and machine learn-
ing for rainfall-runoff modelling during extreme typhoons. Chang et al. (2017) concluded that ANFIS
is a reliable alternative to the physically based model in cases where less data is available.

1.4.2 Algal bloom prediction

Harmful algal blooms, which are a serious threat to natural water systems, have been increasing
throughout the world (Burford et al., 2020; Watson et al., 2016), primarily because of both climate
change and increased nutrient loading from anthropogenic activities (Brookes and Carey, 2011;
Paerl and Huisman, 2008). Moreover, as indicated by Carey et al. (2012) and Huisman et al. (2018),
more intense and longer periods of thermal stratification could potentially specifically favour
blooms of toxic Cyanobacteria. To improve management and mitigation of the effects of algal
blooms, methods are needed to predict their timing and magnitude. However, the factors regulating
algal blooms are complex, variable and site-specific, and often involve high-order interactions be-
tween environmental factors and biogeochemical processes (Reichwaldt and Ghadouani, 2012;
Richardson et al., 2018).

Process-based models encode our understanding of biogeochemical processes in a series of numer-
ical formulations, but these are unavoidable simplifications that lead to an incomplete description
of complex biogeochemical interactions and a low level of confidence in the models (Elliott, 2012).
Based on novel data mining and statistical techniques, data-driven machine learning (ML) models
have been implemented to identify patterns in observed data (Mellios et al., 2020), and with the
increasing number of lake monitoring data (Marcé et al., 2016), ML models have been applied as an
alternative to process-based models for the prediction of blooms (Rousso et al., 2020).

Considering the difficulty of modelling with a process-based model, multiple previous studies apply-
ing ML models, including random forest models (Nelson et al., 2018), support vector machine
(Jimeno-Séez et al., 2020) and artificial neural network models (Xiao et al., 2017) among others,
have been found to improve chlorophyll predictions. However, a drawback of ML models is that
they lack the interpretability and generalisability of process-based models. In recent years, process-
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driven deep learning (PGDL) modelling has emerged and has been applied to water temperature
(Read et al., 2019) and water quality (Hanson et al., 2020), which explicitly combine well-defined
physical theories in training ML models, improving their interpretability. Although this approach has
demonstrated promising results, it is difficult to apply to phytoplankton dynamics due to the many
non-linear interactions within biogeochemical cycles and the difficulty of defining measurable pro-
cesses or mass balances that can be used as a physical constraint on knowledge-driven decisions. In
addition, the scarcity of lake water quality observations (e.g. nutrients and chlorophyll concentra-
tion) may limit the application of ML models in algal bloom modelling (Rousso et al., 2020).

In order to overcome these data limitations, remote sensing using satellite sources (SRS), based on
sensors on board satellites that detect and record reflected or emitted energy, is emerging as an
increasingly widespread system for monitoring different natural environments (Huang et al., 2018;
Lechner et al., 2020). These systems provide high-resolution images with high-quality geometric and
radiometric information. In addition, biogeophysical parameters can be obtained from the pro-
cessing of these images (Vos et al., 2019; Yang et al., 2013), developing different products for ob-
servation of the earth, oceans, etc. (Justice et al., 2002). ESA’s Sentinels (Malenovsky et al., 2012)
and NPP VIIRS (Justice et al., 2013) products offer ever better spatial and temporal resolutions, as
well as the development of new services.

SRS-based products that generate biogeochemical data are developed on a global scale and often
need to be adapted to more local or regional contexts. In fact, there can be significant discrepancies
between satellite-derived products and the actual state of surface parameters (Wu et al., 2019).
This implies that data generated by satellite products are not useful due to large deviations when
compared to in situ measurements (i.e. ground-truth). This reduces not only their usefulness in ap-
plications, but also the accuracy of their derived products. Adapting these SRS systems in local/re-
gional contexts is therefore essential to improve their reliability. SRS data is becoming popular for
near real-time (NRT) monitoring systems to address natural and societal challenges such as shed-
ding light on global and regional challenges, thereby supporting a number of initiatives (e.g. Sendai
Framework, Paris Agreement, Sustainable Development Goals) (Grainger and Kim, 2020; Noe et al.,
2022; Walz et al., 2020).

Several studies have been proposed to develop SRS-based monitoring systems for Chl in the Mar
Menor lagoon (Caballero et al., 2022; Erena et al., 2019; Gémez et al., 2021; Gonzdlez-Enrique et
al., 2023). However, these works assume the validity of the data obtained by satellite systems, fo-
cusing mainly on one or two satellite sources, mainly Sentinel-derived products, without going into
the validation process and/or coverage of all existing products for this gap. This modeling process is
critical in the current unique ecosystem. The reasons are the low quantity and quality of data avail-
able in situ, the spatial mismatch between these measurements and remotely sensed pixels, the
disregarding intrinsic heterogeneity of land and ocean surfaces that release nutrients into the la-
goon, the shortcomings and deficiencies of theories on the scale problem in the validation.
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1.4.3 Hypoxia prediction

Dissolved oxygen (DO) is a parameter often used to assess water quality, responding to changes in
phytoplankton photosynthesis, ecosystem respiration and lake mixing. The increases of duration
and frequency of hypolimnetic hypoxia is often used as an indicator of aquatic ecosystem health.
The decline of DO can have significant impact on water quality by increasing internal nutrient load-
ing and further modifying lake trophic level (Orihel et al., 2017), promoting harmful algal bloom
(Paerl and Paul, 2012), and also reducing fish habitat and even leading to fish kills (Rao et al., 2014).

Nowadays, hypoxia is becoming more common in the hypolimnion of lakes due to intensifying ther-
mal stratification and loss of water clarity (Jane et al., 2021; North et al., 2014). The variability of DO
is affected by the combined effect of physical, chemical and biological conditions acting on the lake
systems. Factors that regulate DO concentration include atmospheric drivers, heat convection, algal
biomass, nutrient loading, sediment resuspension, and sediment oxygen demand (Ladwig et al.,
2021; Miiller et al., 2012).

A variety of modelling tools, including analytical models (Bouffard et al., 2013; Cortés et al., 2021),
and numerical models, i.e., coupled hydrodynamic-water-quality models (Ladwig et al., 2021; Leon
et al., 2011) have been developed to simulate lake DO dynamics via parameterizing air-water inter-
action, photosynthesis, respiration, biochemical oxygen demand, and sediment oxygen demand.
However, water quality simulations tend to be restricted to individual lake due to the unique bioge-
ochemical circle within each lake.

State-of-art data driven ML models have been applied in the wide range of water resource research,
simulating lake water temperature (Read et al., 2019; Yousefi and Toffolon, 2022) and water quality
parameters, e.g., phosphorus (Hanson et al., 2020) and algal bloom (Lin et al., 2023). To solve the
OD prediction task in different lakes, we developed three ML model approaches based on two ML
models, Gradient Boosting Re-gressor (GBR) and Long-short-term-memory (LSTM) network to sim-
ulate multi-year seasonal-scale surface and background DO concentrations in 5 lakes with various
sizes and trophic levels. This hybrid approach has achieved promising results in predicting algal
blooms in a mesotrophic lake (Lin et al., 2023), and can also improve predictions of lake DO and
hypoxia, which is highly dependent on lake hydrodynamics.

1.4.4 Other water quality variables prediction

e Sediment Load prediction:

Sediments transported by streams are of additional interest in environmental engineering, espe-
cially if the sediments transport pollutants. Suspended sediment inputs are among the main factors
contributing to water quality degradation (Zeiger and Hubbart, 2016). Sediments from the water-
courses into the lagoons can contain a significant organic pollutants and/or absorbed heavy metals,
becoming a vehicle for the diffusion of harmful substances that can compromise water quality and
aquatic ecosystems in the receiving lagoons.
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To assess the extent of the soil erosion problem and identify problem areas within a basin, the
amount of sediment transported by streams or rivers must first be reliably quantified. However,
finding accurate tools to estimate suspended sediment load (SSL) is challenging since fluvial sedi-
ment transport is a complex, non-linear process influenced by hydrographic, hydraulic, climatic, and
anthropogenic factors in the river basin (Zounemat-Kermani et al., 2020). To simulate sediment
transport processes in river basins and water bodies, several empirical, physically based, and con-
ceptual methods are available (Borrelli et al., 2021; Merritt et al., 2003). Such models are useful for
estimating sediment concentrations and/or loads generated under different climatic conditions,
land use or management strategies, or in ungauged river basins (Fu et al., 2019).

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) is an efficient tool for many types
of water resource and land management applications (Gassman et al., 2014) and the most popular
physically based model applied at the river-basin scale (Fu et al., 2019). Numerous studies con-
ducted worldwide have concluded that the SWAT model provides a satisfactory estimate of sedi-
ment load (Duru et al., 2018; Dutta and Sen, 2018; Lépez-Ballesteros et al., 2019; Pulighe et al.,
2019). Physically based models simulate sediment produced by rainfall events in a river basin based
on the laws of conservation of mass and energy. They provide an understanding of river basin pro-
cesses, which is beneficial for assessing the impacts of soil and water conservation measures (Singh
et al., 2014). However, a disadvantage of these models is that they require extensive information
for development, calibration, and validation. In addition, calibrating the numerous parameters in
such models is highly complex, due to the non-linearity of sediment transport processes, and re-
quires expert knowledge and high computational time compared to data-driven models (Hamaamin
et al., 2016; Khosravi et al., 2020). These drawbacks demand the exploration of more efficient meth-
ods of sediment computation.

Due to their capacity to model complex non-linear systems, data-driven methods such as machine
learning (ML) have emerged as a powerful alternative to physically based models. In water resource
management, such models can be used to estimate variables such as streamflow (Jimeno-Saez et
al., 2018; Minns and Hall, 1996; Srivastava et al., 2006) and sediment transport (Chen and Chau,
2016; Gupta et al., 2021; Kumar et al., 2016; Olyaie et al., 2015; Zounemat-Kermani et al., 2020). In
contrast to physical models, ML models uses mathematical functions to connect inputs to outputs,
ignoring the physical, logical relationship between variables (Ji et al., 2021). Kisi (2005) used a neural
network approach and a neuro-fuzzy technique to estimate current suspended sediment values ba-
sed on previous streamflow and sediment data, finding that the best results were obtained using
neuro-fuzzy techniques. Al-Mukhtar (2019) predicted suspended sediments in the Tigris-Baghdad
river using random forest (RF), support vector machine, and neural network techniques. The results
showed that RF performed best. Ghasempour et al. (2021) used ML techniques to predict sediment,
presenting a kernel-based approach based on the Gaussian process and the extreme learning ker-
nel. The former was used for linear processes, while the latter was applied to non-linear processes.
Sihag et al. (2021) developed a study to evaluate the best model using M5P and RF regression tech-
niques to estimate sediment. The M5P-based model performed best in the study.
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Few studies have compared SWAT and ML approaches. Singh et al. (2014, 2012) compared SWAT
with a multilayer perceptron artificial neural network model and a radial basis neural network by
simulating monthly sediment yields and obtained better results using the artificial neural network.
Kim et al. (2012) observed that using artificial neural networks to predict total suspended solids was
a useful alternative to SWAT. Sirabahenda et al. (2020) evaluated the SWAT model and the adapted
neuro-fuzzy inference system (ANFIS) for SS prediction concluding that ANFIS obtained higher accu-
racy than SWAT.

2. Materials

2.1 Study areas

2.1.1 Lake Erken

Lake Erken is a mesotrophic lake located in east-central Sweden that has a surface area of 24 km?,
a maximum depth of 21 m, and an average retention time of 7 years. Its surface is usually ice-cov-
ered during winter, whereas during the summer, the water is stratified. It is a shallow lake, the mean
depth is around 9 m. The lake is dimictic, with seasonal stratification commonly beginning in May—
June and ending in August—September. The onset of ice cover usually begins in December—February,
and the loss of ice occurs in March—April (Persson and Jones, 2008). Located near the Baltic coast,
Lake Erken is windexposed and susceptible to periodic wind-induced turbulent mixing. Changes in
algal Chlin Lake Erken have a typical seasonal pattern, with spring and summer peaks in concentra-
tion (Pettersson et al., 2003). Spring blooms are dominated by dinoflagellates and diatoms (Petters-
son, 1985) and initiated by overwinter species from the last autumn (Yang et al., 2016). Cyanobac-
teria dominate summer peaks in Chl, given that they can optimize their vertical position with regard
to nutrients and light (Paerl, 1988; Pierson et al., 1992).

2.1.2  Mar Menor lagoon

The Mar Menor is a 135 km? coastal lagoon located in Regidn de Murcia (southeastern Spain). This
lagoon is one of the largest coastal lagoons in Europe and the largest in the Iberian Peninsula. This
lagoon has an average depth of 3.6m and a maximum depth of 7m. It is isolated from the Mediter-
ranean Sea by a 22 km long sandy coastal barrier called La Manga. La Manga is crossed by several
gullies, which determines the semi-confined nature of its waters and gives them unique salinity and
temperature characteristics. The Mar Menor, in addition to its environmental importance, is a key
place for the economy of the Region of Murcia. Its unique climatic conditions and abundant natural
resources have attracted tourism, recreational uses, and fishing, as well as the importance of agri-
culture to the local economy. The basin that drains the Mar Menor is called Campo de Cartagena
and is an extensive plain of more than 1,200 km? with a network of ephemeral streams that collect
the scarce but intense rainfall (Senent-Aparicio et al., 2015). The Mar Menor has been characterized
by its oligotrophic waters and by its strong resistance to eutrophication. The transparent waters of
the lagoon have been its main characteristic but during the last decade its waters have become
eutrophic (Conesa and Jiménez-Carceles, 2007). In recent decades, the environment of the Mar
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Menor has undergone significant changes due to the intensification of tourism and the expansion
of intensive agriculture (Alvarez-Rogel et al., 2020). These changes have led to an increase in non-
point source pollutant (NPS) loads in the lagoon, which has had a negative impact on its ecological
status, such as increased levels of algae, more frequent episodes of hypoxia and consequent fish
kills (Lopez-Ballesteros et al., 2023). Agriculture has been recognised as the main source of NPS
among the main sources of nutrients, such as nitrogen and phosphorus (Liu et al., 2013). Several
studies (Domingo-Pinillos et al., 2018; Senent-Aparicio et al., 2021) show that the flow transfer from
the Campo de Cartagena aquifer to the lagoon has a significant impact due to the entry of nitrates
and other agrochemical elements from agricultural fertilizers. In addition, in the Mar Menor water-
shed, surface runoff can be very high due to common torrential rainfall events (Senent-Aparicio et
al., 2021) generating massive inflows of water and pollution loads into the coastal lagoon and fur-
ther aggravating its vulnerability. This surface runoff comes through the ephemeral streams that
are the main drainage system of the Campo de Cartagena, which flow only during intense rainfall
events (Alcolea et al., 2019; Senent-Aparicio et al., 2015). Among all ephemeral streams, the eight
most relevant in the Campo de Cartagena are: Mirador, Peraleja, La Marafia, Albujon, Miranda,
Miedo, Beal and La Carrasquilla. Large quantities of water and NPS pollutant loads move through
these ephemeral streams into the coastal lagoon during these extreme rainfall events (Velasco et
al., 2006). The return from crop irrigation recharges the aquifer by increasing the piezometric level
and consequently, the Albujén stream, which is the most relevant of all the ephemeral streams,
maintains a base flow in the final reach of the outlet, fed by the discharge from the aquifer (Garcia-
Pintado et al., 2009). These inputs caused a drastic increase in pollution in the lagoon (Garcia-Aylldn,
2019) and resulted in a process of eutrophication, causing a decrease in water quality (Jimeno-Saez
et al.,, 2020).

In 2016, an extreme eutrophication event resulted in sharp bloom of phytoplankton (Mercado et
al., 2021) that produced a significant change in the quality of the waters, with a substantial increase
in turbidity and a loss of transparency. The algal blooms reduce the bottom light, enhancing benthic
photosynthesis inhibition (Cloern et al., 2016). The death of benthic flora and the decomposition of
their organic material increases the oxygen demand and can, eventually, lead to hypoxia-anoxia
events. These generated important concerns among the environmental community and the tourism
industry, with significant socio-economic repercussions (Garcia-Ayllon, 2018). Subsequently, after
the "Santa Maria" flood of September 2019, attributed to the meteorological phenomenon known
as "cold drop", the ecological degradation of the Mar Menor was aggravated by the massive input
of nitrogen, phosphorus and organic matter, exceeding even the peak of Chl observed in 2016
(Jimeno-Saez et al., 2020). Later, in August 2021, there was a massive die-off of fish and crustaceans
(Caballero et al., 2022). Under this scenario, early intervention is required to reduce nutrient and
other pollutant entry into the lagoon.

For section 3.1. of the tasks contained in this deliverable, the study area of study is the Mosa basin.
The study area covers about 7.15 km?. The basin has an altitude ranging from 560 m to 230 m at its
lowest point (Fig. 1) and is characterized by steep slopes and rapid response to storms This basin is
a headwater basin draining the left bank of the Albujén stream. The stream in the basin is ephemeral
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and only carries water during specific periods in response to rainfall. This stream is dry for prolonged
periods.

= Ephemeral streams

I:l Subasins
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Value
wom High : 507.234

Low : 154.009

Fig. 1. Mosa basin at the headwaters of the Mar Menor basin.

2.1.3 Other study areas

For the task of predicting DO and hypoxia episodes, experiments were carried out on 4 other lakes
(Lake Muggelsee (Germany), Lake Furesg (Denmark), Lake Mendota (U.S.), and Lake Ekoln (Swe-
den)) in addition to Lake Erken (Sweden). The characteristics of each lake are described in Table 1.

Table 1. Physical characteristics of the lakes.

Characteristics Erken? Miiggelsee? Furesg® Mendota* Ekoln®
Lake area (km?) 23.7 7.4 9.4 39.6 29.8
Mean/Max depth (m) 9/21 4.9/8 7.4/37.7 12.7/ 25 15.4/ 50
Residence time (years) 7 0.12-0.15 10 4.3 <1

Lake type dimictic Polymictic® dimictic dimictic? dimictic
Trophic state Mesotrophic Eutrophic Mesotrophic  Eutrophic Eutrophic

1 Pierson et al. (1992); 2 Kakouei et al. (2022); 3 Gurkan et al. (2006); 4 Farrell et al. (2020); > Goedkoop et al. (2011); ©
Shatwell and Kohler (2019).

In Lake Fures@, a major restoration project started in 2003 to control the internal loading of phos-
phorus from the sediment during stratification period with the actions including the combination of
hypolimnetic aeration and biomanipulation (Gurkan et al., 2006). Since then, the hypoxia has been
reduced in the bottom waters of the lake.

The invasive aquatic plant species Nuttall’s waterweed (Elodea nuttallii) was first detected in 2011
in Lake Muggelsee, spreading rapidly, and was the most abundant macrophyte species by 2017. The
abundance of Another invasive species, the dreissenid mussel, increased with the increasing inva-
sive waterweed, following the invasion meltdown hypothesis (Wegner et al., 2019). E. nuttallii can
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largely increase the oxygen production via photosynthesis but also can result in extremely low DO
in the bottom water of lakes, developing night-time anoxic conditions (Vilas et al., 2017).

In Lake Mendota, the grazing activity of freshwater zooplankton, i.e., Daphnia, leads to a reduction
in algal biomass in late spring-early summer, which is so-called clear water phase (Carpenter and
Kitchell, 1988). However, the lake also experienced the invasion from the spiny water flea,
Bythotrephes longimanus (hereafter Bythotrephes) since the fall of 2009, which led to the decline
in water clarity after 2009. Although one of the major Daphnia species (i.e., Daphnia pulicaria) is a
preferred prey of Bythotrephes, another smaller-bodied Daphnia Mendotae, which competes dif-
ferently with Bythotrephes increased in spring after the invasion (see Fig. 2). The combined result
of these changes was that grazing on phytoplankton and probably accelerating organic matter min-
eralization and hypolimnetic oxygen depletion before summer stratification (Ladwig et al., 2021;
Matsuzaki et al., 2021; Walsh et al., 2017).
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Fig. 2. (a) Timeseries of Daphnia Mendota biomass in Lake Mendota, and (b) shows the boxplots of biomass
over the month.

For the study of sediment as the target variable of the prediction task, the study area of the Mar
Menor and the Erken lagoon did not have sufficient data to carry out a preliminary experiment.
After a hard task of finding areas where to test the methodology, an experimental area was chosen,
the Oskotz basin (Navarra, northern Spain), where sufficient quality data was available. In Navarra,
Spain, soil erosion is a major problem on agricultural land (Casali et al., 1999; De Santisteban et al.,
2006). For this reason, the Government of Navarra created a network of experimental basins to
obtain data on water quality and soil erosion and evaluate the impact of agriculture in different
areas of the region. In terms of morphology, soils, climate, land use, and management, these exper-
imental river basins are representative of large areas of Navarra and Spain (Casali et al., 2008). Os-
kotz is one of the four pilot basins in this network. This task uses data recorded at the Oskotz river
basin to study SSL. Oskotz river basin is a small experimental basin covering 16.74 km? More details
of the basin can be found at (Casali et al., 2010; Jimeno-Séez et al., 2022).
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2.2 Data

2.2.1 Lake Erken

Lake Erken has a long-running automated monitoring program that provides hourly meteorological
data, water temperature profiles, and the flow from the inflow and outflow (Fig. 3).

e Location

59.855°N Erken Laboratory
99.890°N @ Inflow Kristineholm
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Fig. 3. Map of Lake Erken. The locations of the monitoring systems are shown.

A meteorological station on an island offshore from Uppsala University’s Erken Laboratory provides
measurements of wind speed, solar radiation, and air temperature. An automated water tempera-
ture monitoring system records water temperature profiles at a depth of 15 m with sensors placed
at 0.5 m intervals. Water discharge is measured entering the lake from the largest input at Kristine-
holm, and the outflow at Stensta (Fig. 3). These data have been further quality controlled and com-
bined with data from other nearby meteorological stations to provide a long-term dataset that is
suitable as input for model simulations (Moras et al., 2019).

Since 1991, a consistent (1-2 week) monitoring program has collected integrated water samples
from the epilimnion and hypolimnion during stratified conditions or from the entire water column
during isothermal conditions. Stream samples are collected from the main inflow at Kristineholm
and the outflow of the lake. All samples are analyzed by the Erken Laboratory for all major nutrient
concentrations (e.g., NOX, NH4, PO4, Total P, Si, etc.), dissolved oxygen (02), and Chl concentration.

Water and nutrient loads input to the GOTM/SELMAPROTBAS model were calculated from the dis-
charge and nutrient concentrations measured at Kristineholm (Fig. 3) which accounted for 50.7 %
of the lake watershed. Inputs from the remaining watershed were estimated from the measured
Kristineholm inputs that were scaled by area to account for the remaining 49.3 % of the watershed
area.

2.2.2 Mar Menor lagoon

The data used in the tasks included in this deliverable come from various sources. The data available
in the Mar Menor are much more limited than those available for the Erken lake test area.
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For the flood prediction task, precipitation and streamflow data of ephemeral streams that drain
into the Mar Menor were used as input data. The precipitation data were obtained from the SAIH-
Segura pluviometry network service, the Automatic Hydrological Information System of the Segura
Hydrographic Basin, which collects and stores the hydrological, hydraulic, and complementary in-
formation of the entire basin, at any time and under any circumstances, even in real time and with
centralised control (https://www.chsegura.es/es/cuenca/redes-de-control/saih/).

Collecting observed flow data in ephemeral stream presents a significant challenge with classical
hydrometric techniques due to the high water velocities and the presence of floating objects, which
not only pose a safety risk to operators, but also have the potential to damage any instrument in
contact with the water. To address these challenges and within the framework of the
SMARTLAGOON project, an in-situ monitoring system based on computer vision using Particle Im-
age Velocimetry to monitor flows at a fixed location was installed in the several studied streams.
With this monitoring system it is possible to obtain flow data on a sub-hourly scale (5 minutes). In
this way, the hydrographs of the storms can be recorded. These observed flow data are used to-
gether with the precipitation data at the same time scale as inputs to the ML models to simulate
the hydrograph produced by the increasingly severe storms in the study area. Another more eco-
nomical monitoring system was installed at the same point in the stream to provide support for the
fixed camera. This system called Freestation. More details on these systems can be found in section
3.1.

To develop the SWAT hydrological model in the Mosa basin described in section 2.2.2 different data
from different sources were collected. With these data the sub-basins, the drainage network and
the Hydrologic Response Units (HRUs) were determined. The tool designed for QGIS Mapswat
(Lépez-Ballesteros et al., 2022) was used for the preparation of input data. These data were ob-
tained from the following sources: (i) DEM: Digital terrain model made from the LIDAR point clouds
of the first Cover with a mesh pitch of 25 meters, from Spanish National Geographic Institute (IGN);
(ii) SOILS: Harmonized World Soil Database v 1.2 (Nachtergaele et al., 2010a). 30 arc-second raster
database; and (iii) LANDUSE: Corine Land Cover 2018 of European Environment Agency (EEA) under
the framework of the Copernicus programme. A graphical summary of the process used for SWAT
data preparation is shown in Figure 4.
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Fig. 4. Graphical overview of SWAT data preparation

Regarding the data on the lagoon itself, thanks to the buoy installed in the SMARTLAGOON project,
data collection has started with the aim of using them in the developed models, but there is not yet
sufficient data available to use them in the calibration of the models. Therefore, the in-situ data on
water quality parameters of the Mar Menor were obtained from the Regional Government of Mur-
cia (CARM). The CARM has promoted periodic measurements of the lagoon since 2016 when the
degradation of the lagoon became evident. This dataset provides almost weekly measurements at
different depths for twelve points along the Mar Menor (Fig. 5). These points are called in situ meas-
urements points (ISMPs) and they represent the heterogeneity of the lagoon, having different char-
acteristics such as depth, and distances to different interesting points such as sea sore and wadis.
Among the data provided by CARM, it is included Chl, turbidity, Oxygen, salinity, and pH. CARM
provides filtered data so no cleaner nor outlier search is needed.

Other in-site data used are those collected by management the Direccién General del Mar Menor,
in compliance with the urgent measures approved by CARM, carrying out weekly environmental
monitoring by means of gauging and analyses in various sections of the Rambla del Albujén, the
main stream that provides runoff water to the lagoon. The records of discharge and the concentra-
tion and load of nutrients (nitrates and phosphates) of the Albujén stream is available on the Mar
Menor information service website (https://canalmarmenor.carm.es/monitorizacion/monitor-

izacion-de-parametros/aforos/).
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Fig. 5. In situ monitoring points (ISMP) carried out by Regional Government of Murcia (CARM) at Mar
Menor lagoon.

In the Chl prediction task, the publicly available SRS data provided by ESA satellite products have
been analysed. The European Copernicus Marine Service (CMS) that provides free, regular, and sys-
tematic authoritative information on the state of the Blue (physical), White (sea ice), and Green
(biogeochemical) ocean, on a global and regional scale. Among several products that Copernicus
offers through their different platforms, data from Sentinel-3 A and B were used in this study. Table
2 describes the S3 missions. Both satellites have on board the imaging spectrometer Ocean and
Land Colour Instrument (OLCI) that measures solar radiation reflected by the Earth in 21 spectral
bands at a spatial resolution of 300 m. It is important to note that this work focuses on these Senti-
nel-3-related products as they offer daily data from the same world region around the same hour
(see Table 2) and having a high temporal resolution is essential for the development of a monitoring

system.
Table 2. Main satellite instruments features
Satellite/Instrument  Revisit time (day)  Scanning time (UTM)*  Resolution at nadir (m)  Chl Algorithm  Start Mission (year)  End Mission (year)
Sentinel-3A OLCT | 10:10 + 1h ~300 Chl_nn 2016 2023
Chl_nome
Sentinel-3B OLCI 1 10:10 4- 1h ~ 300 Chl_nn 2018 2025
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Sentinel-based data are processed and split into products depending on the stage of the process.
Thus, OLCI provides three different processing levels. This work focuses on Level-2 (L2) data that
provides the water Chl-a concentration in mg/m3. OLCI L2 product also provides additional data
such as reflectances, Aerosol Optical Thickness (AOT), Diffuse Attenuation coefficient (Kd940), just
to mention a few. Despite these parameters are not considered in this work, they are used by ESA
algorithm to calculate the Chl-a data provided. Another important feature for OLCI products is the
resolution. In this work, we use Water Full Resolution (WFR) product that provides the data related
with water masses at 300 meters resolution. Regarding time granularity, the CMS download tool
selects files by timeless, which indicates the period from the image was acquired until it becomes
public. Particularly, we focus on NTC (Non-Time Critical) files that refer to products delivered within
the next 24/48 hours after data acquisition by satellite, in contrast to NRT (Near Real Time) which
refers to products delivered less than 3 hours after acquisition. NTC products contain data adjusted
and collated using information from other platforms thus seems more precise to use this product in
the present analysis. It is also important to note that we consider the best-case scenario for data
coverage provided by SRS sources; i.e., NTC data instead of NRT. Anyway, a monitoring system could
provide the data in NRT and then rewrite it with its NTC data when it becomes available.

To obtain the processed Chl-a historical data from Sentinel-3 A and B, we use CREODIAS (Malinowski
et al., 2020); a platform that contains the data generated by Sentinel, Envisat, Lansat, and other
EODATA satellites. Its design allows third-party users to prototype and builds their own value-added
services and products. This service allows programmers to request the previous Sentinel products
easily from Sentinel-hub. In this case, the API returns a set of netCDF4 files that contain parameters
related to Chl-a, GPS coordinates, light reflectances, atmosphere light absorption, etc.

2.2.3 Other study areas

For the task of predicting DO and hypoxia episodes, 4 lakes in addition to Erken were selected as
study areas. Since 2007, a multi-parameter YSI profiling sensor was installed in Lake Miiggelsee ob-
servation stations providing hourly DO concentration measurements. And since 2015, Lake Erken
improved its automated monitoring program to include a YSI profiling system that collects hourly
profiles of DO concentrations. For these two lakes, the hourly surface DO concentrations have been
averaged to daily values, and the minimal bottom DO concentrations in a day were used to repre-
sent the daily values.

For the sediment prediction task, data from the experimental basin of Oskotz were used.
This basin is equipped with an automatic meteorological station and a hydrological station that
measures streamflow and water quality parameters and takes water samples. The data from these
stations are available in the experimental basins portal from the local Government of Navarra
(http://cuencasagrarias.navarra.es/) and include precipitation (mm), maximum and minimum tem-

peratures (°C), and observed streamflow and SSL data. Hydrometeorological data are available from
2002 to the present while sediment data are available from 2004. These data, obtained from obser-
vation stations in the basin, were used to construct the ML methods and the hydrological model.
The SWAT hydrological model also required spatial inputs such as digital elevation model (DEM)
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data, land use, and soil data. The 25 x 25 m DEM was obtained from the National Geographic Insti-
tute (IGN) in Spain. Land-use map was extracted from Corine Land Cover (2012) with a scale of
1:100,000, and a soil map with a resolution of 1 km was implemented from the Harmonized World
Soil Database (HWSD) (Nachtergaele et al., 2010b).

3. Methods

3.1 Machine learning approaches for predictions of flood

In this task, ML methods such as LSTM, GRU and CNN, and a physically based model such as SWAT
have been used to model the sub-hourly flows during storm events in a headwater basin of the
catchment draining the Mar Menor lagoon. There are two stages, the first is the calibration of model
parameters using data from specific storm events and a second stage is the validation of these cali-
brated models using other storm events. The observed streamflow data needed to calibrate and
validate the model were obtained using Particle Image Velocimetry methods. The scale used is sub-
hourly (5 minutes) because storms typical of semi-arid climates tend to be brief but intense.

e Generation of hourly hydrographs:

To develop an accurate hydrological model, it is essential to measure flows during hydrological ex-
tremes as these data provide the basis for calibrating and validating the model. Collecting observed
flow data under such circumstances presents a significant challenge with classical hydrometric tech-
niques due to the high water velocities and the presence of floating objects, which not only pose a
safety risk to operators, but also have the potential to damage any instrument in contact with the
water. A computer vision-based in-situ monitoring system using Particle Image Velocimetry (PIV) to
monitor flows at a fixed location has been employed in this task (Fig. 6). This monitoring system was
installed at the outlet of the basin to determine the discharge during rainfall events. Due to the
unavailability of stream gauges, the purpose of this streamflow data is to obtain observed data to
calibrate sub-hourly models using SWAT and ML modelling. The system has proven to be a valuable
tool in water resource management and environmental monitoring and provide continuous and
accurate measurements enables decision-makers to have a comprehensive understanding of
stream behavior and flow dynamics (Pefia-Haro et al., 2021). In conclusion, represents a significant
advancement in optical measurement systems for monitoring stream flow. Its robust and reliable
operation, combined with its flexibility in different stream types and flow conditions, makes it a
valuable tool for water resource management.
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Deliverable 3.3 — Report on results of machine learning approaches for flood, algal bloom and 24
hypoxia predictions

PARTICLE IMAGE VELOCIMETRY TO MONITOR FLOWS

Fig. 6. PIV to monitor flows in the study area (Mosa).

Another more economical monitoring system was installed at the same point in the stream to pro-
vide support for the fixed camera. This system called FreeStation is an economical DIY environmen-
tal monitoring system (Mulligan et al., 2021). Figure 7 shows the various Freestations that have been
installed in the Mar Menor basin, such as the one installed at the Spanish Institute of Oceanography
(IEO), Mosa and Torre Pacheco.
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Fig. 7. Freestations installed in SMARTLAGOON project.
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The FreeStation and FreeSensor initiatives employ open source 3-D printing technology, open
source software, and open source hardware to create and install dependable environmental data
loggers and sensors at the lowest possible cost. These are intended to increase access to trustwor-
thy, detailed local environmental data in locations that may lack the resources and know-how to do
so. The designs are open source and free to use, as their names suggest, so anyone can build
them.(Chan et al., 2021).

These monitoring systems (Fig. 7) measure precipitation, wind speed and direction, temperature,
humidity, atmospheric pressure, and solar radiation. In addition, freestations have been installed
that incorporate sensors that can measure distances positioned at various points in the Mar Menor
watershed in order to determine the distance between the sensor and the water surface present in
the channel in order to determine the discharge from a flow curve in the channel. Figure 8 shows
the output interface of the freestations installed in our study area.

Download: :Op_l"_u"ﬁ:
Tools:

Month

| Latest record: 2023-06-20 03:01:07 GMT | min: 0.0, max: 20.0, mean: 0.131, count: 534 |

Fig. 8. Graphical output of the freestation interface for recorded precipitation in the MOSA basin.

e SWAT model:

SWAT is a physically based, hydrological model developed to simulate water, sediment, and agricul-
tural chemical production in a river basin in a semi-distributed form. The SWAT model divides the
basin into sub-basins, each of which is further divided into several Hydrological Response Units
(HRUs), areas of land that are homogeneous and have similar responses to meteorological inputs.
Each HRU is a combination of a specific soil type, land use, and slope. The hydrological part of the
model simulates a catchment’s hydrological cycle, based on the water balance equation, and calcu-
lates the runoff from each HRU. The curve number and Muskingum methods are employed for run-
off computation and channel routine respectively.
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In this research, SWAT model has been used to simulate the flow of an ephemeral stream in a Mosa
basin at the headwaters of the Mar Menor watershed. The QSWAT plugin for QGIS has been used
for this purpose.

In this study, SWAT was employed to model the hydrographs of the ephemeral stream generated
during storm events. Using streamflow data obtained using PIV techniques, this model has been
calibrated. The validation is performed with another observed hydrograph from a different storm
event than the calibration event. Until now, it has only been possible to calibrate it, so the validation
is in progress due to the availability of data.

From the DEM, the stream and the different sub-basins were obtained. DEM, soil and landuse map
were used to determinate the HRUs. HRUs are spatially-defined areas within a watershed that ex-
hibit similar hydrological characteristics, such as land use, soil type, and slope. HRUs serve as the
fundamental modeling unit in SWAT and play a crucial role in simulating various hydrological pro-
cesses. Finally, the meteorological data required as input data for SWAT model were introduced
into the model. In this way the SWAT model is ready to run its simulation.

e Selection of inputs for ML models:

On the one hand, the ML models were analysed univariate and on the other hand multivariate.
Univariate models use a single input variable to make predictions. These models focus on obtaining
the relationship between a single characteristic and the target variable. Multivariate models use
multiple input variables to make predictions considering the interaction between different charac-
teristics. The hydrographs to be modelled have a sub-hourly scale, because they are those gener-
ated by flash storms, many extreme, in an ephemeral stream. For our flood flow prediction task
three variables were considered, the discharge itself, the precipitation at different instants (t, t-1,
etc) and the accumulated precipitation (from 5 minutes up to two hours).

The selection of variables is an important step in the development of ML models and is an iterative
process that varies depending on the problem and the specific data. Linear correlation is a useful
measure to preliminarily assess the relationship between multiple variables. The linear correlation
between variables has been analysed in this study using Spearman's correlation and Kendall's cor-
relation. However, this correlation does not capture non-linear relationships so it is also important
testing other variables even if their correlation is weak.

e ML model:

— Long Short-Term Memory (LSTM): The LSTM network is part of a class of deep learning architec-
tures, called recurrent neural networks (RNNs), built for sequential and time series modelling
(Hochreiter and Schmidhuber, 1997). The core concepts of LSTM are the cell and hidden states
and its three gates (input gate, forget gate, and output gate; see Fig. 9). Essentially, the LSTM
model defines a transition relationship for a hidden representation through a LSTM cell which
combines the input features at each time step with the inherited information from previous time
steps. This architecture is suitable for extracting information from sequential data (Rahmani et
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al., 2021; Read et al., 2019). At its core, LSTM is designed to overcome the vanishing gradient
problem faced by traditional RNNs. The vanishing gradient problem occurs when gradients di-
minish exponentially as they propagate back through time, making it difficult for RNNs to cap-
ture long-term dependencies. LSTM addresses this issue by incorporating a memory cell and
several specialized gates.

The memory cell in an LSTM unit is responsible for storing and updating information over time.
It has a self-loop, allowing it to retain information from previous time steps. The cell's state is
selectively updated using various gates, which control the flow of information into, out of, and
within the LSTM unit. The primary gates in an LSTM are: (i) Forget Gate: Determines which in-
formation from the previous cell state should be discarded; (ii) Input Gate: Controls the update
of the cell state with new information; and (iii) Output Gate: Modulates the output of the LSTM
unit based on the current cell state. The gates of an LSTM unit are trained to adaptively learn
how to retain important information and discard irrelevant or noisy information.

Gated Recurrent Unit (GRU): GRU is another type of recurrent neural network (RNN) architec-
ture that is widely used. GRU is like LSTM network but has a simpler structure with fewer gates,
making it computationally efficient and easier to train. The key components of a GRU unit are:
(i) Update Gate: Controls the flow of information from the previous hidden state to the current
state. It determines how much of the previous state should be retained and how much of the
new information should be integrated into the current state; and (ii) Reset Gate: Determines
how much of the past information should be forgotten when computing the current state. It
helps the model decide how much historical information is relevant to the current time step.

Convolutional Neural Network (CNN): a CNN is a deep learning architecture. The key character-
istic of CNNs is their ability to automatically learn and extract hierarchical features from raw
input data. This is achieved using convolutional layers, pooling layers, and fully connected layers.
The convolutional layer applies a set of learnable filters (also known as kernels) to the input
image, performing element-wise multiplications and summations to produce feature maps.
These filters capture local patterns and spatial dependencies in the data. Multiple filters are
used to learn different features at different locations in the image. The pooling layer downsam-
ples the feature maps, reducing their spatial dimensions while preserving the most salient infor-
mation. The most common pooling operation is max pooling, which selects the maximum value
within a defined pooling window. Pooling helps in reducing the dimensionality of the data, mak-
ing the network more efficient and invariant to small spatial transformations. Towards the end
of the CNN architecture, one or more fully connected layers are used to combine the extracted
features and make predictions. These layers have connections between all neurons, similar to
those in a traditional neural network.
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3.2 Machine learning approaches for predictions of algal bloom

In the SMARTLAGOON project, the objectives related to the algal bloom prediction task are (1) to
apply ML models to predict algal blooms in a well monitored lake such as Lake Erken and in a less
monitored lagoon such as the Mar Menor, (2) to evaluate the performance and uncertainties of the
models, and (3) to explore approaches to improve model performance and broaden model applica-
tions.

3.2.1 Modelling methods for predicting algal chlorophyll concentrations in Erken Lake

We first tested the ability of ML models in predicting algal chlorophyll (Chl) concentrations via avail-
able environmental factors, including observed lake nutrient data, and then proposed a two-step
ML approach for predicting algal dynamics that first estimates lake nutrient concentrations which
often have limited observations and secondly predicts variations in algal Chl using these pregener-
ated nutrient concentrations combined with other observed environmental factors that are col-
lected at higher frequency. We also tested a simple hybrid model architecture that, by adding hy-
drodynamic features derived from the PB model into the training features of the two-step ML ap-
proach, allowed us to include additional information describing physical lake processes expected to
affect variations in algal growth and succession in the machine learning prediction. We applied the
above workflows to predict changing Chl concentration, as a proxy for the occurrence of algal
blooms, via the gradient boost regressor (GBR) and long short-term memory network (LSTM). Two
shuffling year tests were conducted. One assessed the uncertainty of ML models in predicting Chl
during the same 2-year period, and the other evaluated the sensitivity of ML accuracy to various
training—testing year combinations and lake nutrient sampling intervals.

e Modelling methods:

A Process-based (PB) hydrodynamic lake model, GOTM (General Ocean Turbulence Model) (Bur-
chard et al., 1999), was used to generate water temperature profiles and other hydrodynamic met-
rics. GOTM also served as the foundation of water quality simulations made with the SELMAP-
ROTBAS model (Mesman et al., 2022) that is coupled to GOTM through the Framework for Aquatic
Biogeochemical Models (FABM) (Bruggeman and Bolding, 2014).

Tree models have been widely applied in modelling phytoplankton dynamics in freshwater systems
(Fornarelli et al., 2013; Harris and Graham, 2017; Rousso et al., 2020). The gradient boosting regres-
sor (GBR) is one of these tree models, iteratively generating an ensemble of estimator trees with
each tree improving upon the performance of the previous. Details about the GBR model can be
found in Friedman(2001). The hyperparameters in GBR are optimized via the RandomizedSearchCV
function within the Scikit-Learn library. The loss function of model is chosen as “huber”, which is a
combination of the squared error and absolute error of regression. Since the target variable in our
research Chl concentration has peak values during algal blooms, which could be regarded as outli-
ers, the huber loss function is more robust and gives greater weight to peak values than the mean
squared error function.
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More details on LSTM networks can be found in section 3.1. Different combination of numbers of
layers and neurons (1-3 layers, 20-200 neurons) have been tried d, but larger numbers of layers and
neurons did not obviously improve the results but increased the computational time a lot, and
worse results were achieved when the number of layers and neurons were decreased. Eventually,
we used 3 hidden LSTM layers with 100 neurons in each layer, and each of them is followed by a
dropout layer with 0.01-0.03 dropout rate for regularizing the network. The numbers of batch and
epoch are set as 10 and 100, respectively. Thus, the training samples are divided into 10 batches,
and the internal model parameters will update after working through one batch. And the deep
learning algorithm will work through the entire training dataset 100 (epochs) times. The
‘MinMaxScaler’ was used to pre-process the data for generalization purposes, and ‘Mean Absolute
Error’ was used as loss function.

Compared to the GBR model, LSTM has more complex model architectures, carrying the “memory”
from the previous time steps. In this study, the GBR and LSTM were applied, respectively, to assess
the performance of ML models with and without memory.

cell state Dropout layer Dropout layer Dropout layer
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Fig. 9. Left: Detail of a LSTM cell. Right: The LSTM model architecture (based on Hochreiter and Schmidhuber,
(1997)).

e Design of predictive workflows and shuffling year data sparsity tests:

Three workflows have been tested using a dataset split for training (years 2004-2016) and testing
(years 2017-2020). In all three workflows, a 5-fold cross-validation using the training dataset was
used to optimize the hyperparameters in the ML models. The training features and target variables
used in each workflow are defined in Table 1.

Workflow 1 directly predicts Chl concentration based on available environmental observations. The
training and testing datasets were limited by the frequency of lake nutrient observations, which
resulted in 5—7 d gaps between data points. The time step of LSTM was set to 1; that is, the envi-
ronmental factors on the target date and previous observation date, which may be 5-7 d ago, were
used to train the model and make predictions. In workflows 2 and 3, a two-step approach was im-
plemented. Daily measurements of physical factors were employed to pre-generate daily variations
in lake nutrients using separate ML models. The ML models were trained on a daily time step using
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the measured environmental factors and pre-generated nutrient concentrations. The LSTM time
step was set to 7 days. In workflow 3, three hydrodynamic features, i.e., mixing layer depth (z.),
Wedderburn number (Wn), and seasonal thermocline depth (thermD), derived from the GOTM
model, were considered as daily training features in the two-step ML approach.

Following the two-step approach and using workflow 3, we set up two tests. (1) To assess the un-
certainty induced by variations in the data used to train the ML models, we shuffled the training
years, randomly taking 13 years out of the 2004—-2018 dataset 30 times, and tested the model pre-
dictions of Chl during 2019-2020. And, (2) to test if the workflow could be used for other water
systems which may have less frequent lake nutrient monitoring data, we conducted a data sparsity
test that evaluated the sensitivity of models to the lake nutrient and Chl sampling interval. For this
test the lake nutrient and Chl concentration observations in the training dataset were downsampled
toa 7,14, 21, 28, and 35 d sampling interval. Then for each sampling interval using the 2004-2020
dataset, Chl was predicted for different consecutive 4-year periods when the ML models were
trained by the remaining 13 years of data. Data shuffling was conducted 13 times so that every 4-
year period in our dataset was tested.

Table 3. List of training features and target variables in each workflow. Stars (*) indicate training features,
circles (o) indicate target variables, and squares (0) indicate the variables are the target variables in step 1
used to daily produce a training feature for use in step 2. The order of nutrient model sequence is from the
top to bottom based on its position in the table (NOx to Si).

Variables Sample interval  Workflow 1 Workflow 2 Workflow 3

|
Stepl Step2 | Stepl  Step2
|

Inflow Daily * = # # *

Meteorological data (air temperature, Daily * N N * *
wind speed, short-wave radiation, pre-
cipitation, humidity, and cloud cover)

AT Daily * * * | % #
Ice duration Daily * * e | & %
Days from ice-off date Daily # # ® | # #
le Daily | 3 %
Wn Daily | * 4
thermD Daily | % #
NO, 1-2 weeks * O * | O *
0, 1-2 weeks * O * | O *
PO, 1-2 weeks # O # | O #
Total P 1-2 weeks * O * | O *
NHy 1-2 weeks * O # l O #
Si 1-2 weeks * O * | O *
Chl 1-2 weeks 0 0 | 0
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Model performance was evaluated by comparing the simulated and measured Chl concentrations
and by calculating the mean absolute error (MAE), root mean square error (RMSE), and correlation
coefficient (R?). To evaluate the accuracy of the model in detecting the onset of an algal bloom, we
calculated a confusion matrix in workflows 2 and 3, where the observations were linearly interpo-
lated to daily values, and predicted daily Chl concentration were smoothed with a 7 d rolling mean.
Using these data, the onset of a bloom was categorized as occurring when the daily change of Chl
(AChl) exceeded a threshold, 0.35 mg m= 41, This works well in Lake Erken where Chl concentrations
are frequently monitored (near weekly), and the linear interpolation can be expected to be reason-
ably representative of the Chl concentrations between measured samples. Considering the random-
ization in the ML models, we also add a 3 d window on the bloom onset prediction; that is, we
considered the prediction of a bloom valid if the measured data suggested a bloom the day before
or after the simulated onset. We used the true positive rate (TPR), false positive rate (FPR), and
modified accuracy (kappa).

e Feature selection:

The feature selection process is based on some a priori knowledge of the underlying phenomena
related to algal blooms. All workflows made use of the daily automated monitoring data. In addition,
the temperature difference (AT) between surface water (averaged over the upper 3 m) and bottom
water (15 m) was also used to represent the thermal structure of the lake, and the duration of ice
cover in the previous winter and the number of days from ice-off date were used.

In workflow 2 and 3 nutrients are predicted sequentially, with each pre-generated nutrient predic-
tion included in the training data of the next nutrient prediction (Table 3). The calculation of the
hydrodynamic features for workflow 3 is described below.

The mixing layer depth (z.) was computed using the GOTM simulated vertical eddy diffusivity (K:)
profiles, and was defined as the first depth, from the lake surface, where K; fell below the predefined
threshold value (Wilson et al., 2020), and can be describe as:
Ze = z; + (KZthreshold - Kzi)(ﬂ)a
Kzi+1—Kzi

where z; and K;; are the depth from the lake surface, and the eddy diffusivity, respectively, in the it"
layer within the model. The threshold value K;¢ho/d was set to 5%x10° m?s?, based on the value
described in Wiiest and Lorke (2009) and Lin et al. (2021).

Unlike the dynamically varying mixing layer depth derived from the modelled K; profiles, the calcu-
lation of the seasonal thermocline depth was estimated using Lake Analyzer (Read et al., 2011)
based on the modelled temperature profile. A movement of thermocline can allow nutrient re-
leased from the sediment to enter the upper water column, leading to nutrient enrichment. It also
can lead to resuspension of cells or dormant forms of cyanobacteria into the water column, encour-
aging bloom development (Reichwaldt and Ghadouani, 2012).

The Wedderburn number W, is used to estimate the chance of upwelling occurring in the lake. It is
described as:
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w, = Lz
n u?Lg’

whereg’ =g 2—’) is the reduced gravity due to the change in water density Ap between the hypolim-
h

nion (pn) and epilimnion (pe). Ls is the lake fetch length (2700 m for Lake Erken) and u~ is the wind
stress induced water friction velocity, defined as:

T
u, = ’—W,
Pe

where tyis the wind shear (N m2) on the water surface, computed by 7 = Cp pair U?. U is wind speed
(m s1) measured at 10 m above the water surface. Cp is drag coefficient, given as 103 forU<5m s’
1 and 1.5x103 for U>=5m s

3.2.2 Modelling methods for predicting algal chlorophyll concentrations in Mar Menor lagoon

Until a few months ago the Mar Menor Lagoon was less monitored and therefore the availability of
historical data is much more limited than in the Erken Lake. At present, with the data available, it is
not possible to replicate the methodology developed in Erken Lake, so another methodology is be-
ing evaluated in the Mar Menor. As data are limited, high-resolution spatial and temporal monitor-
ing systems are mandatory to (1) identify the threats to the lagoon, (2) understand the main prob-
lems affecting this ecosystem and (3) predict how the lagoon will behave in the future. In this task,
a monitoring system based on the European remote sensing service Copernicus that allows daily
monitoring of Chl for the Mar Menor lagoon is analysed. In addition, several ML and deep learning
(DL) models are analysed to adapt the Chl satellite data generated by Sentinel-3 to the particular
context of the shallow and highly saline Mar Menor.

The main contributions of this task are as follows: (1) Evaluating ML and DL models accuracy focused
on Chl concentration in Mar Menor by using remote sensing. (2) Finding a global model for Mar
Menor to allow us to estimate Chl concentration that will provide a continuous health lagoon mon-
itoring and better dataset to Chl forecasting. The model is able to detect Chl concentrations peaks.
(3) Finding a cluster based on depths.

This task focused on the Chl-a of the Mar Menor in its twelve ISMPs. Table 4 shows the main dataset
descriptors. Moreover, in this work the experiments manage the data by depths, which means the
models will be fitted using different depths, but never mixing them. Thus, the measures taken be-
tween 0 and 1-meter depth appear in this work as depth 0, those taken between 1 and 2 meters
are depth 1, and so on.
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Table 4. Chl-a data description provided by CARM

Depth(m) Chl-a (mg/l)
count 6146 6146
mean 2.225 2.651
std 1.66 3.865
min 0 0.022
259 1 0.726
50% 2 1.367
75 4 2.964
max 6 28.112

Sentinel-based products use two different algorithms to obtain Chlorophyll concentration from this
raw information. We focus on the Inverse Radiative Transfer Model-Neural Network (IRTM-NN) to
estimate from normalized waterleaving reflectance at OLCI bands b440 to b674, b709, 6s and Ag
(namely Chlor nn'). Unlike other chl a estimations algorithms, the S3 NN method provides data even
when some reflectances provided at level-2 are negatives. Therefore, IRTM-NN algorithm can deal
with these values, something that the classical algorithm does not allow and which forces negative
values to be discarded. This consideration is taken to allow us to match as many days as possible
between the S3 data and the in situ data in order to obtain a larger data set to train and test the
models. Similarly, we consider that the twin S3 A-B reflectances provide similar reflectance infor-
mation as they use the same OLCl instrument and the same processes to obtain L2 products, so we
merge the data from both sources into one dataset.

It is worth mentioning IRTM-NN relies on neural networks to address the problem as a non-linear
multiple regression method that drastically reduces computational time, once the network is
properly trained to fit the coefficients. Fortunately, CMS already provides the IRTM-NN model that
outputs water-inherent optical properties such as total backscattering coefficient (BBP443), total
absorption coefficient (ATOT443), phytoplankton absorption coefficient (APH443), colored Detrital
and Dissolved Material absorption coefficient (ADG443), Chlorophyll (Chl2) concentration, Total
Suspended Matter (TSM) concentration. These S3 products also provide a flag value for every pixel
which indicates if valid the kind of terrain: water, land or snow. More information can be found at
Pahlevan et al. (2020). Anyhow, in this study all data used and associated to each ISMP are classified
by S3 as water. Those invalid has been discarded. An initial analysis shows that S3 Chl values has a
middle correlation with CARM in-situ data. The correlation depends on the ISMP, that means S3
does not provide reliable results for random point. Also, in the whole sentinel dataset there is not
Chl-a peaks that means its model is not able to detect algal blooms that has happened several times
during the study period.

e ML models for Chl-a forecasting:

The prediction of Chl-a is considered in this task as a regression problem using satellite data as input
and in-situ observations as output. To find a specific model to fit the SRS data obtained through the
Copernicus system to the Chl-a measurements obtained for the Mar Menor, the use of different ML
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models is proposed to analyse which of them provides the best results. Five ML algorithms were
selected and are described below:

— Random Forest Regression (RFR): RFR is a supervised learning technique, using a set of decision
trees. To avoid overfitting, RF uses the bagging technique whereby each tree is trained with
different data samples for the same problem. No single tree sees all the training data. In this
way, by combining their results, some errors are compensated by others and we get a prediction
that generalises better (Breiman, 2001).

— Regression decision tree (DT): DT are a sub-type of prediction trees that are applied when the
response variable is continuous. In training a regression decision tree, instances are distributed
through the nodes that generate the tree structure until a terminal node is reached, the condi-
tion for generating or splitting a node is usually the Residual Sum of Squares. When a new in-
stance is to be predicted, the nodes of the tree are traversed according to the attributes of the
new observation until a terminal node is reached. When the terminal node is reached, the out-
put is the average of the output attribute of that node (Breiman, 2017).

— K-Nearest Neighbors Regressor (KNN): KNN is an instance-based method that tries to classify or
predict a new instance x based on the k-nearest to that value. To do so, it uses different distance
measures, depending on the types of attributes that make up the instance. In the case of regres-
sion prediction, the value returned is usually the average of the output attribute values of the
k-nearest neighbors to the given instance. It is worth mentioning that KNN method does not
require training, since the model is created at the same time as a new instance is inferred
(Hackeling, 2014).

— Multi-layer Perceptron Regressor (MLP): MLP is a supervised learning algorithm that learns a
non-linear function approximator. It consists of an input layer and an output layer, with one or
multiple hidden layers in between. Each layer consists of neurons that are trained with the back-
propagation learning algorithm. MLPs are designed to approximate any continuous function and
can solve problems that are not linearly separable (Taud and Mas, 2018).

— Convolutional Neural Network (CNN): CNNs are a type of neural network that consists of a deep
learning network architecture that learns directly from data, without the need for manual fea-
ture extraction. More details on CNN in section 3.1. A 1D convolutional layer has been used. The
network finds the relationship between adjacent reflectances (Harbola and Coors, 2019).

e Experimental set up:

The dataset used in this work contains the pairing data S3-AB and ISMPs by day and coordinate.
Thus, we generate several datasets by ISMP and depths containing the S3-AB reflectances and
CARM Chl-a measurements. The output unit is the mg/m?3 of Chl-a, considering as inputs the remote
sensing reflectances. Table 5 resumes the number of instances available for each dataset.

Table 5. Number of instances by ISMP and depth.
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Depth
ISMP 0 I 2 3 4 5 6
1 87 87 87
2 105 [ 105 | 105 | 105 | 105 | 98
3 108 | 108 | 108 | 108 | 108 | 108 | 42
4 12 [ 112 | 112 | 112 | 112 | 30 4
S 102 { 102 | 102 | 102 | 102 | 87
6 103 [ 103 [ 103 | 103 | 103 | 103 | 46
7 108 109 109 108 106
8 103 | 103 | 103 | 103 | 102
9 96
10 98 99 99 99 99
11 104 | 104 | 105 | 103 | 54
12 101 101 | 101 | 101 | 101 98

A total of four experiments have been carried out aiming to get an appropriate model. ML tech-
niques are initially used but also CNN model can improve the results. For the experiments, algo-
rithms are fitted using the best parameter optimization to obtain the best fitting models. The fol-
lowing, we summarize the steps follows to carry us to find the model: (1) The first experiment per-
forms a 5-fold cross-validation randomly on the ML algorithm proposed. It evaluates a local model
for each ISMP and depth. (2) The second experiment performs a 5-fold cross-validation randomly
on ML by using all ISMPs indiscriminately to find a global model. Always, the depths are handling
separately. (3) The previous experiments suggest a cluster existence. Thus we repeat the previous
ones excluding ISMPs to evaluate a the model by cluster. (4) Finally we repeat all the experiments
by using a CNN Conv1D.

3.3 Machine learning approaches for predictions of hypoxia

Due to the limited availability of data in the Mar Menor lagoon, the first ML experiments for hypoxia
prediction have been carried out in five lakes where enough data were available for testing. Once
data on DO in hypoxic episodes are available, we will be able to carry out specific tests and experi-
ments for the Mar Menor lagoon.

In this task, we developed three ML model approaches based on two ML models, Gradient Boosting
Regressor (GBR) and Long-short-term-memory (LSTM) network to simulate multi-year seasonal-
scale surface and bottom DO concentrations in 5 lakes with various size and trophic levels. Except
for applying GBR and LSTM directly, we designed a 2-step mixed model workflow by inputting the
results from GBR model into LSTM. These ML approaches were trained with available meteorologi-
cal forcing. We also used a one-dimensional (1-D) hydrodynamic model forced with the same me-
teorological and hydrological data to provide addition information on lake thermal structure, strat-
ification, and ice cover that could also be included as ML model training features. Except for evalu-
ating these ML approaches in simulating the variability of DO and detecting hypolimnetic hypoxia
in the lakes, this study also aims to explore the significant factors regulating DO concentrations in
each individual lake. In the following sections, the comparison against process-based models, limi-
tations, and future applications of the ML approaches in the water management are discussed.
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e Process-based hydrodynamic models:

Simple one-dimensional process-based hydrodynamic models were used to estimate variables that
describe lake thermal structure and mixing could also serve as training inputs to the ML models. The
1-D hydrodynamic model, GOTM (General Ocean Turbulence Model; (Burchard et al., 1999); was
applied in Lake Erken (Mesman et al., 2022; Moras et al., 2019), Miggelsee, Furesg, and Ekoln) and
GLM (General Lake Model (Hipsey et al., 2019) was applied in Lake Mendota (Ladwig et al., 2021).,
2021)). The meteorological and inflow data used to train the ML models were also the inputs of the
hydrodynamic models (Fig. 10). We used the daily vertical profiles of simulated water temperature
and eddy diffusion (Kz) obtained from the process-based models to derive daily features to train the
ML models. Mixed layer depth (MLD) was defined as the first depth, from the lake surface, where
Kz fell below the 5x10-5 m2s-1 (Wilson et al., 2020), and Wedderburn number (Wn) was computed
based on MLD, and indicates the magnitude of upwelling. We used Lake Analyzer (Read et al., 2011)
to estimate thermocline depth (thermD) and Schmidt stability (St). These parameters based on the
daily temperature profiles indicate the extent of mixing, hypolimnetic thickness and the intensity of
stratification, which further relating to the variability of bottom DO concentrations (Cortés et al.,

2021; Foley et al., 2012; North et al., 2014).
Hydrodynamic factors (e.g.
AT, MLD, thermD, Wn)

External factors (e.g. Water
s treatment, Invasive species)

Meteorological data, Process-based

River inflow

model

Ice information .

LSTM model [£ GBR model

| Direct GBR

Surface DO Surface DO

o = o .
i Surface DO h
BottomDO & Bottom DO L ~ BottomDO .~

—=O8

[ Direct LSTM |

Fig. 10. Workflow of three machine learning models. Green arrows represent direct LSTM model, blue arrows
represent direct GBR model, and red arrows represent 2-step mixed model.

e Direct LSTM and GBR models:

This study applied two ML models, LSTM and GBR, built by the Scikit-Learn (https://scikit-
learn.org/stable/, last access: May, 2023) and TensorFlow (https://www.tensorflow.org/, last ac-

cess: May, 2023) libraries in Python.

GBR is a type of tree models, a class of ML models that are most applied in the water resource
studies, including DO prediction (Heddam and Kisi, 2018; Kisi et al., 2020). The GBR model can rank
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the feature importance for each predictive target, illustrating the key factors which regulate the DO
concentrations. More details in section 3.2.1 of this document.

LSTM belongs to recurrent neural network, built for sequential and timeseries modelling. This model
architecture has achieved promising results in the harmful algal bloom simulation in Lake Erken (Lin
et al., 2023). More details in section 3.2.1 of this document. There are 3 hidden LSTM layers with 50
neurons in each layer, and each of them is followed by a dropout layer with 0.2 dropout rate for
regularizing the network. The numbers of batchs and epochs are set as 20 and 100, respectively.
The ‘MinMaxScaler’ was used to pre-process the data for generalization purposes, and ‘Mean Ab-
solute Error’ was used as loss function. The time step of LSTM was then set to 7 days, which means
the memory of all the training features within the previous 7 days was used to train the model and
predict the targets.

The direct applications of these two models involved using the training features described below
(Table 6) and corresponding targets (Surface and bottom DO concentrations) along the timeseries
in the training periods to train the models, and testing (validating) the model performance by input-
ting the features along the timeseries in the testing periods and comparing the predictive targets
with the measurements (Fig. 10).

e 2-step mixed ML model workflow:

By using both the GBR and LSTM models, the 2-step mixed ML model workflow was developed. First
the GBR was used to simulate both surface and bottom DO concentrations, and then ranking the
importance of features affecting surface and bottom DO, respectively. Secondly, only the features
ranked as important in the GBR simulations were retained in the training of LSTM models so that
the more computationally demanding LSTM training was accelerated and only considered the sig-
nificant features. Also, the predictive daily values of DO concentration from GBR were added into
the training dataset of LSTM (Fig. 10). Based on the results from direct GBR model, the seasonal
variability of DO concentrations could be represented, so the idea is to take GBR results as the ref-
erence and the initial values into the training processes of LSTM models.

e Training features

The general training features used in every tested lake are daily meteorological data, river inflow
data, ice information, and derived hydrodynamic factors. However, given that the physical and bio-
geochemical characteristics and data availability varied in each lake, each lake has its unique training
features (Table 6).

The duration of ice cover period could affect the frequency, intensity and occurrence of winter mix-
ing events, and further impact the renewal of deep water. Ice related features, i.e., ice duration and
days from ice-off date, were included as training features for the lakes that were routinely ice cov-
ered (Lake Erken, Miggelsee, Mendota, Ekoln; Table 6) to indicate the extent and timing of spring
mixing and deep-water renewal. The ice duration feature was converted into 4-level categorical
feature according to the length of ice duration in the previous winter (Table 6). Note that we try to
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avoid the direct usage of time-related features, since the seasonality related to time strongly affects
DO and tends to overwhelm the impact from other features. Thus, the days from ice-off date feature
was also converted into 7-level categorical feature according to the days before or after ice-off date
(Table 6).

In Lake Mendota, zooplankton, i.e., Daphnia, density which were recorded biweekly were interpo-
lated linearly into daily values. Original data shows the biomass of Daphnia per m3, but since the
data were sparse, we also categorize Daphnia into 4 levels (Table 6).

To consider other external factors in the specific lakes, we added external training factors, to ac-
count for invasive species in Lake Miggelsee, and Mendota, and hypolimnetic aeration in Lake
Fures@. These factors were set as binary number, with 1 representing period after the invasion in
Lake Miggelsee and Mendota or water treatment operation on going in Lake Furesg. In addition,
DO in the surface and bottom waters were predicted sequentially by the ML models, with predictive
surface DO being included in the training features of the bottom DO.

Table 6. Training features in each lake.

Features (Data types) Miiggelsee
River discharge (metrics)

Air temperature (metrics)

Air pressure (metrics)

Precipitation (metrics)

Wind speed (metrics)
Humidity (metrics, 0-100)

Shortwave radiation (metrics)

Cloud cover (metrics, 0-1)

delT (metrics)

Accumulated bottom water tem-
perature (metrics)
Ice duration (category)?

Days from ice-off date (category)®
MLD (metrics)
Whn (metrics)
Schmidt Stability (metrics)

ThermD (metrics)

Water treatment (binary)

Invasive species (binary)

Daphnia (category)©

Accumulated Phosphate from river
loading (metrics)
Dissolved organic nutrients from
river loading (metrics)
Inflow temperature (metrics)

a. 4levels: ice duration over 60 days, 30-60 days, less than 30 days, and no ice duration

b. 7 levels: over 30 days before ice-off date, 30-20 days before ice-off date, 10-20 days before ice-off date, 10
days before or 10 days after ice-off date, 10-20 days after ice-off date, 20-30 days after ice-off date, over 30
days after ice-off date.

C. 4levels: Daphnia biomass > 400/m?3, 200-400/m3, 50-200/m?3, <50/m?3.
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e Model evaluation

To assess the uncertainty induced by variations in the training data, we randomly removed 2 years
data out of the whole training periods 30 times and tested the model performances in the fixed
testing periods (Table 7). The results of these 30 times model runs were aggregated to assess the
model performance in each lake.

To further evaluate model performance in detecting hypoxia, we define the hypolimnetic hypoxia
when bottom DO concentrations decreased below the specific thresholds. Given that the restora-
tion actions have been taken in Lake Furesg since 2003, the hypoxia phenomena in hypolimnion
have been reduced. Also, the sample interval of hypolimnetic DO in Lake Ekoln is over a month, not
sufficient to interpolate the exact timing of anoxia. Thus, we only used Lake Erken, Miggelsee, and
Mendota, to evaluate model performance in detecting hypoxia events. DO < 2 mg/L was used as
the criterion for hypoxia in Lake Mendota which experience serious eutrophication and anoxia in
the seasonal stratified period and DO < 3 mg/L was used as the criterion in Lake Erken and Miiggel-
see (Nirnberg et al., 2013; Scavia et al., 2014).

Table 7. Data available for the OD prediction task
Data Erken Muggelsee Furesg Mendota Ekoln
Averaged DO sampling interval 8 (2004-2014)

L . 18 16 31
during ice-free period (days) 1(2015-2020)
Training period 2004-2016 2004-2016 1990-2009 1999-2009 1987-2008
Testing period 2017-2020 2017-2020 2010-2017 2010-2015 2009-2019

3.4 Machine learning approaches for predictions for other water
quality variables

3.4.1 Predictions of suspended sediment load

Modeling the specific processes that occur in a basin is highly complex, and no model works per-
fectly in all basins. Identifying models that accurately simulate the complexity of basin processes
using available data is a challenge for decision-makers in basin management (Nguyen et al., 2019).
This study individually tests two ML methods, M5P and RF, as alternatives to the SWAT model to
estimate SSL in the Oskotz river basin. The main objective of this task is to determine efficient mod-
els for SSL estimation by comparing the results obtained using ML models with those obtained using
the physically based SWAT model.

e Hydrological model (SWAT)

SWAT calculates the sediment yield for each HRU using the Modified Universal Soil Loss Equation
(MUSLE) (Williams, 1975), which predicts erosion as a function of a runoff factor representing the
energy used in the detachment and transport of sediment (Neitsch et al., 2009). SWAT computes
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water and sediment yield for each HRU individually and aggregates them at the sub-basin level.
Details of this model in section 3.1.

The Oskotz river basin was subdivided into four sub-basins and homogenous sections, resulting in
53 HRUs. The Hargreaves-Samani approach was chosen to estimate potential evapotranspiration.
The SUFI-2 algorithm was used to automatically calibrate the SWAT model parameters in SWAT-
CUP (Abbaspour et al., 2007). Since sediment transport is dependent on runoff, a sequential cali-
bration approach was applied (recommended by Arnold et al., (2015)), in which streamflow gener-
ation parameters were calibrated first, followed by sediment parameters. One thousand simulations
were performed twice, and the parameters were readjusted after the second iteration. The selected
parameters were calibrated using daily time steps and adjusted using the Nash-Sutcliffe efficiency
(NSE) as an objective function to ensure that the simulation results were as close as possible to the
streamflow and SSL observations. The periods 2002-2012 (11 years) and 2013-2020 (8 years) were
used to calibrate and validate the streamflow, respectively. In the case of SSL, 2004-2012 (9 years)
was the calibration period and 2013—-2020 (8 years) was the validation period. In both calibrations,
three years were used as a warm-up period.

e Machine learning algorithms

— MS5P: The M5P technique (Wang and Witten, 1997) is a remodeling of Quinlan's M5 (Quinlan,
1992) for induction trees in regression models. This technique combines a traditional decision
tree with the possibility of performing linear regression functions at the nodes. First, an induc-
tion decision tree is constructed, applying the splitting criterion, which minimizes the variance
of a subset of class values at each branch, at each node. This process is stopped if the values of
each branch vary slightly or there are a minimum number of instances at the node. Secondly, a
pruning process is performed, in which a regression function converts the internal nodes into a
leaf node. Finally, to avoid discontinuities, a smoothing process is applied that combines the leaf
model prediction with each node encountered on the way to the root node.

— Random forest (RF): RF (Breiman, 2001) is defined as an ensemble based on decision trees. De-
cision trees have the advantage of good interpretability in both the constructed model and in-
ference. However, they have the disadvantage of bias and variance problems. These complica-
tions are resolved using the ensemble to merge and combine information from the decision
trees. On the one hand, the data variability and amount of stored information are increased. On
the other hand, the interpretability of the constructed model is maintained, although in a more
complex manner. In general, the RF ensemble has the following characteristics:

= Givenadataset of [N| samples to construct each tree a, | N| cases are randomly selected
using replacement as a training dataset. The process of sampling with replacement is
called bootstrapping. One third of the data is excluded from training and used for testing
(Schonlau and Zou, 2020). These data are known as out-of-bag (OOB) samples. Each tree
has an OOBa set with which it is tested. The testing result provides a weighting for each
tree used in the combination of the information.
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